Klug Lab Other News

New Publication Alert: Klug Lab Unveils Novel Sapphire Optrode in International Collaboration

In an exciting development for neuroscience research, the Klug Lab has published a new paper detailing an innovative sapphire optrode that promises to enhance optogenetic experiments. This work represents an international collaboration between research teams from Macau, Guangzhou, UC Denver, and the Klug Lab at CU Anschutz.

  • A Transparent Yet Durable Solution

    The newly developed device combines neural recording capabilities across multiple channels with precise light stimulation through miniature LEDs embedded directly in a sapphire substrate. What makes this optrode particularly remarkable is the sapphire material itself—transparent like glass but with exceptional hardness that enhances both safety and targeting accuracy during experiments.

    Flexible Design for Customized Research

    One of the most significant advantages of this new technology is the ability to arrange recording sites and LED locations in arbitrary configurations. This flexibility will allow researchers in the future to customize the optrode layout for specific experimental requirements, potentially opening doors to novel experimental paradigms that were previously impossible to implement.

    Enhancing Optogenetic Research

    For those working in optogenetics—a technique that uses light to control cells in living tissue, typically neurons that have been genetically modified to express light-sensitive ion channels—this development represents a substantial leap forward. The integration of both recording and stimulation capabilities in a single, highly durable probe will enable more sophisticated experiments with greater precision.

    The combination of multi-channel neural recording with targeted light delivery through integrated LEDs addresses a critical challenge in the field: simultaneous stimulation and recording at precise locations in neural tissue.

    Citation:

    Yanyan Xu, Ben-Zheng Li, Xinlong Huang, Yuebo Liu, Zhiwen Liang, Xien Yang, Lizhang Lin, Liyang Wang, Yu Xia, Matthew Ridenour, Yujing Huang, Zhen Yuan, Achim Klug, Sio Hang Pun, Tim C. Lei, Baijun Zhang:

    Sapphire-Based Optrode for Low Noise Neural Recording and Optogenetic Manipulation

    ACS Chemical Neuroscience Vol 16, 628-641, 2025.

    https://pubs.acs.org/doi/10.1021/acschemneuro.4c00602

Dr. Benzheng Li Awarded Prestigious Hearing Health Foundation Emerging Research Grant

We are excited to announce that Dr. Benzheng Li has been awarded a Hearing Health Foundation Emerging Research Grant for his innovative work in computational neuroscience.

  • Dr. Li's research focuses on developing complex mathematical models and neural decoders to explore the neural mechanisms behind sound localization. His work bridges the gap between theoretical neuroscience and hands on experimental approaches, potentially leading to improved hearing technologies and interventions.

    The Hearing Health Foundation's Emerging Research Grant program supports promising scientists in the early stages of their careers who demonstrate exceptional potential to advance our understanding of hearing disorders. This competitive grant will provide crucial funding for Dr. Li to continue his groundbreaking work.

    This grant represents an important opportunity to advance our understanding of how the brain processes spatial auditory information. By developing more accurate models of neural circuits involved in sound localization, better treatments for those with hearing impairments can be facilitated.

    Dr. Li's interdisciplinary approach combines computational modeling, signal processing, and neuroscience wet alb approaches to understand the neural activity patterns associated with hearing in noise processing. His research has implications not only for hearing health but also for broader applications in neural engineering and sensory augmentation technologies.

    For more information about Dr. Li and this award, visit:

    https://hearinghealthfoundation.org/meet-the-researcher/ben-zheng-li-2025